
Generation of Library Models for Verification of Android
Applications

Heila van der Merwe
Dept. of Computer Science
University of Stellenbosch,

South Africa
hvdmerwe@cs.sun.ac.za

Oksana Tkachuk
SGT Inc. / NASA Ames

Research Center
Moffett Field, California
oksana.tkachuk@nasa.gov

Brink van der Merwe and
Willem Visser

Dept. of Computer Science
University of Stellenbosch,

South Africa
{abvdm, wvisser}@cs.sun.ac.za

ABSTRACT
Android applications are difficult to verify and test since they have
many external dependencies. To overcome this problem, environ-
ment generation can be used to create a model of the environment
to simulate the behavior of these external dependencies. Creat-
ing this environment model manually is a tedious process and
although there are many techniques available to generate models,
the key lies in identifying how these techniques can be applied to
a specific domain. In this paper we discuss two static analysis
tools OCSEGen [3] and Modgen [1] and how they can be applied
to the Android domain to generate models for specific parts of
the environment.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Test-
ing tools

Keywords
Android Application, Environment Generation

1. INTRODUCTION
Open software applications or components with external refer-
ences and dependencies are notoriously difficult to test and verify.
For the system-under-test (SUT) to execute soundly, a stable,
controlled environment is required that reacts correctly and con-
sistently. This is not always possible since we may not be able to
control the state or behavior of the external dependencies during
analysis. This problem can be addressed by modeling the envir-
onment to simulate the behavior of the external dependencies.

In testing, mocks or stubs are used to model the functionality of
external libraries or services. These models can either be created
by hand, or generated automatically using static or runtime ana-
lysis. Static analysis usually produces over-approximation and
runtime analysis under-approximates the behavior of the environ-
ment. However, for verification, we require precise models. This is
why environment modeling in the context of verification is usually
done manually.

Java PathFinder (JPF) [6] is a model checker and analysis en-
gine that allows developers to create an environment model us-
ing modeled classes to simulate the behavior of the actual classes.
JPF, together with its many extensions1 including jpf-concurrent,
jpf-awt, net-io-cache, provide models for many of the Java library
classes. These models are usually written by hand, since analysis
of the environment is non-trivial.

1http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects

Driver Unit

Stub

Stub

Stub

Figure 1: Structure of an environment model

Creating these models manually is a time-consuming task that
requires expert domain knowledge. The environment needs to
be analyzed, simplified and optimized. Environment generation
is aimed towards the automatic generation of this environment
model. The system being analyzed can be viewed as consisting
of two components: the unit under test and the environment in-
cluding all libraries with which the unit interacts [2]. The envir-
onment can be broken down into the driver and the environment
stubs as shown in Figure 1 [2]. The driver executes the unit by
making calls into the application code whereas the environment
stubs model the behavior of classes referenced and called from
the unit [2]. Note that Figure 1 shows a simplified view of the
driver and stubs. In reality the stubs might contain callbacks to
the application or to the driver.

This research is work-in-progress and is based on the work by
Dwyer et al. [2]. In their work OCSEGen [3], an environment
generation tool, was used to generate an environment model for
Swing/AWT applications. Our work is focused on generating an
environment model for Android applications. An environment
model is required to verify Android applications since they are
heavily dependent on the Android software stack. Android ap-
plications are built on top of the Android application framework
which provides the standard structure and implementation of an
application. They are also event-driven and the events that drive
the execution of the application are dispatched from the main
Android system using Inter Process Communication (IPC).

In our previous work [4, 5] we created this environment model
manually to verify Android applications using JPF. This was done
by inspecting the application and then identifying the behavior
required from the environment to run this application. We then
mapped this behavior to a set of classes and methods that imple-
ment this functionality. The Android code-base is large and we
made use of tools such as “grep” and the type & call hierarchy
views in Eclipse to navigate the code. We found that the relev-
ant classes have references and dependencies on other parts of the
system or native libraries without which they would not be setup

https://ntrs.nasa.gov/search.jsp?R=20190001994 2020-05-09T10:21:49+00:00Z



correctly or they might not run at all.

For this research we improve our manual approach by identifying
areas where the tools can replace or assist our manual effort. To
do this we investigate two static analysis tools geared towards en-
vironment generation: OCSEGen [3] and Modgen [1]. These tools
were chosen as we have previous knowledge about their function-
ality and implementation. These tools are both developed for
analysis of Java applications and both tools have previously been
applied to environment generation of Graphical User Interface
(GUI) applications [1, 2]. We apply these tools to our approach
and present some practical results for running them on the An-
droid domain to answer the following research questions:

RQ1: Are these tools applicable to the Android domain and how
can they assist in automatically generating an environment
model for Android applications?

RQ2: What are the limitations of these tools and can we im-
prove or extend their functionality to be more useful to the
Android domain?

2. BACKGROUND
Modgen and OCSEGen are both built on the SOOT2 static ana-
lysis framework which analyses Java byte-code.

OCSEGen [3] is an environment generation tool that can gener-
ate both drivers and environment stubs for the unit. The driver
generation is configured by user specifications given in LTL or
regular expressions. For stub generation the tool makes use of
static analysis and side-effect analysis. The tool has many con-
figurations for stub generation. It can either analyze the classes
in the unit or in the environment. For both of these configura-
tions the user can specify fields, inside or outside of the unit, to
track using side-effect analysis. When the tool is run, it builds
a call graph of all reachable methods from the component under
analysis. This graph is then searched for statements that change
the values of these fields. The changes are percolated up to the
first class reachable from the unit to retain side-effects to the
fields being tracked. The changes are stored in method summar-
ies of each reachable method. The summaries are then used for
code generation of stubs. For this work, we make use of the stub
generation capabilities of the tool. The tool is very efficient at
generating empty-stubs, but its strength lies in being able to find
and preserve side-effects in the generated stubs.

Modgen [1] is an environment generation tool focused on optim-
ization of library classes by reducing their complexity. The tool
has two modes: In the first mode, it generates an empty stub of
a given class by returning default values from its methods. In
the second mode, it makes use of program slicing to generate an
abstract model of a class. It allows the user to specify fields of a
class that store values important to its functionality [1]. The class
is then “sliced” in the sense that methods, fields and statements
with no reference to these fields are removed or stubbed out so
that the class only includes statements relevant to these specific
fields. After the slicing is complete, decompilation of the sliced
code is required to get the Java source code.

Android applications are built on top of the Android applica-
tion framework which provides the core implementation of an ap-
plication. Android applications consist of a collection of compon-
ents implementing one of the four base component types exposed

2http://www.sable.mcgill.ca/soot

Application Framework

Application Process

Application Components

System Process

Application Framework

System Services

Dalvik VM Native 
LibrariesDalvik VM Native 

Libraries

Binder IPC

Figure 2: The Android environment

by the framework: Activity, Service, BroadcastReceiver and Con-
tentProvider. Each component type has a specific task to perform
which it does by making use of local services, remote services and
utility classes to store, transport and process data.

Android applications are event driven and their execution is driven
by User Interface (UI) and system events. These events are dis-
patched from the system to the currently active application com-
ponents through IPC and the Android application framework.
Each Android application together with the application frame-
work runs in its own process (Figure 2). The core functionality
of the Android OS is also implemented as an Android application
called the system server and runs in its own Linux process. Each
process has its own memory, classloader, threads and Dalvik VM
that do not influence the execution of the other processes.

3. OUR APPROACH
Android applications can also be divided into the unit and en-
vironment structure used in environment generation (See Figure
3). The unit consists of the Android application code and the
environment consists of the Android application framework and
the Android system. The environment can then be broken down
into the driver and the environment stubs.

Android applications are driven by UI events as well system events.
Application components such as the Activity and Service com-
ponents follow a strict life-cycle and system events can change
the state of a component by calling its life-cycle methods in a
specific order. To verify the application components, they need
to be executed in the way they were intended to execute on the
Android software stack.

To ensure applications are exercised correctly we need to preserve
important behavior of the application framework and Android
system. This includes the behavior of the framework to process
incoming events and manage the state of components. Instead of
creating stubs for all the classes in the environment, a core set of
classes are identified which needs to be preserved. These classes
can be simplified and optimized as long as their behavior stays the
same. The rest of the classes in the environment have little or no
influence on the application’s execution and their implementation
can be stubbed out.

For this research we focus on creating general environment stub-
s/models that can be used to execute Android applications. To
generate these stubs we follow the following methodology:

• identify the set of core classes,



Unit

Stub

Stub

Stub

Driver

Core

Events

Figure 3: Environment of an Android application

• find external references to the core,

• generate stubs for these external references and

• generate optimized models for the classes in the core.

3.1 Identifying the core environment
The classes in the core environment implement behavior of the
framework that is crucial for correct execution of the application.
The core classes can be identified by looking at the components of
the Android framework and Android system on which the applic-
ation depends and then selecting all classes implementing these
components.

OCSEGen can be used to identify the set of classes referenced
from the application [2], but there is no way to distinguish which
classes referenced from the application are important enough to
keep in the core.

3.2 Generating environment stubs
The generation of the environment stubs is an iterative process.
We start by generating empty stubs for all classes and methods
referenced from the core. This set of generated stubs must be
updated if the core changes.

Although the classes outside of the core environment do not con-
tain functionality crucial to the application execution, they might
be referenced from the core or from the application and they
might have side-effects on the core classes. OCSEGen allows us
to specify fields in the core for which side-effects will be retained
when generating the environment stubs. The Android framework
is large and side-effect analysis is computationally expensive so
side-effect analysis should be run on a specific feature one at a
time.

3.3 Refining the implementation of the core
The set of core classes contain the main functionality required
by the unit, but their implementation tends to be intricate and
dependent on other parts of the environment. This is especially
a problem for verification techniques such as model-checking that
suffer from the state explosion problem [1]. We can optimize the
execution of the core classes by reducing the complexity of their
implementation and their external references to other parts of the
framework. This is done by using the environment generation
tools to identify and remove code that does not directly influence
the execution of the application.

4. RESULTS
To illustrate our current progress, we discuss some of our findings
from using the tools to create environment stubs. The application
we used for the experiments is a Calculator application consisting
of two Activity components. Each Activity has its own UI asso-
ciated with it which displays specific operations to the user. We

used this example because it is a simple GUI Android applica-
tion with limited behavior, but it still requires the basic features
required by all Android applications.

4.1 Identifying the core
The core environment consists of the classes modeled by hand
together with classes in the application framework used without
modification. We identified a set of 65 core classes from our previ-
ous work where we modeled the environment manually. A subset
of the core classes, such as the base component classes, will al-
ways be included in the core, but some classes might change as
the requirements of the unit changes. For a specific application
we might for example require a model to make a connection over
the network whereas another application might require code to
interact with a database. The main components used by the Cal-
culator application are:

Event handling As mentioned in Section 3, Android applications
are driven by UI and system events dispatched by the system
services. The Calculator GUI listens for click events on the Button
widgets. To process incoming UI events, the application requires
that the event listeners, properties of the widgets as well as the
hierarchy of the widgets be preserved. The widget classes include
the Button, EditText and TextView objects whereas the Window

and WindowManager classes store containment of these widgets.
The UI listeners can then be called directly to processes input
events.

The Calculator also responds to system events that change the
state of the application components. To ensure the correct execu-
tion of the application, the classes responsible for processing the
system events and calling the life-cycle methods of the application
components must also be preserved.

Local Services The Calculator application makes use of two
local services running it its own process. The LayoutInflator

service is used for instantiating the GUI from XML files and the
ResourceManager is used for retrieving application resources such
as images or constant values defined in XML. We modeled both
of these services manually to simplify their implementation while
preserving their behavior as required by the application.

Remote Services One very important remote services required
by Android applications is the ActivityManagerService. The
ActivityManagerService manages the state of all application
component running on the device by sending system events to
application. The Calculator application is started using this ser-
vice and it makes use of this service to start other application
components. This requires the service to respond to calls from
the application such as starting a Service or Activity. This ser-
vice was also modeled manually.

The main problem with automating the discovery of the core en-
vironment is that it requires domain knowledge of the system to
identify which components of the framework/system need to be
preserved and which classes correspond to these components.

4.2 Generating environment stubs
The set of core classes identified in the previous section was used
to generate 460 empty stub classes. To ensure that we have not
stubbed out classes with side-effects on the core environment, we
identified the fields that are important for correct execution of
each feature. We then ran side-effect analysis to see which of the
environment classes modify or effect these fields.



The first example on which we ran side-effect analysis is the Span-
nableStringBuilder class. This class implements the CharSe-

quence interface and acts as a wrapper class for text stored in
the mText field of the TextView object (Listing 4). The Span-

nableStringBuilder stores the text as an array of primitive char
objects and allows the text to be manipulated.

Although TextView is part of the core environment, Spannable

StringBuilder is not. We ran side-effect analysis to identify all
methods that have a side-effect on the mText field. Listing 1 shows
a code extract from the stub of the SpannableStringBuilder class
generated using OCSEGen.

1 public class SpannableStringBuilder implements CharSequence,...{
2 private char[] mText;
3 ...
4 public SpannableStringBuilder(java.lang.CharSequence param0) {
5 if (Verify.randomBool()) {
6 this.mText=((char[])Verify.randomObject("char[]"));
7 }
8 }
9 public android.text.SpannableStringBuilder insert(int param0,

java.lang.CharSequence param1) {
10 if (Verify.randomBool()) {
11 this.mText=((char[])Verify.randomObject("char[]"));
12 }
13 return this;
14 }
15 public int length() {
16 return Abstraction.TOP_INT;
17 }
18 ...
19 }

Listing 1: Stub of the SpannableStringBuilder class

To generate this stub, we used may side-effect analysis which
shows changes that might be made to the fields. The Verify.

randomBool() statements indicate a non-deterministic choice and
are used when verifying the application on JPF. They are used
here to indicate that for some executions of the method, this side-
effect might not happen. The Verify.randomObject statements
are also used when the application is run on JPF to represent a
non-deterministic choice over an object.

Side-effect analysis has difficulty to track method calls on arrays
since they have no explicit Java object implementing their be-
havior – it is mainly implemented in native code. Arrays are
usually abstracted in static analysis, i.e., the elements are not
distinguished. From the resulting stub in Listing 1 we can see
that OCSEGen can recognize that certain methods, such as the
insert method, has a side-effect on mText whereas other methods
such as the length method has no side-effect on this field. It can
not however indicate what the effect is.

This information can be used during stub creation. It indicates
that before creating an empty stub for a class, we need to in-
spect certain methods, such as the insert method, to ensure that
we preserve possible side-effects to the core environment. This is
also the case in the Calculator example where SpannableString-

Builder stores the text entered in the EditText widget. If we do
not preserve this text and its changes, the Calculator using the
value of this field will execute incorrectly (see lines 6, 9 and 11 of
Listing 2).

Another example we looked at is the Activity class and its fields
storing the current state of the Activity. As the state of the
Calculator’s Activity changes these fields need to be updated. We
ran side-effect analysis on the environment to see which classes

1 public void onClick(View v) {
2 // retrieve the button that was pressed
3 Button button = (Button) v;
4

5 // get the digit/operator that was pressed
6 String value = button.getText().toString();
7

8 // get the current expression in the valueEdit
9 String expression = valueEdit.getText().toString();

10

11 if (value.equals("=")) {
12 // calculate result of current expression
13 }
14 }

Listing 2: Extract from the CalculatorActivity

outside of the core environment have side-effects on these fields.
Side-effect analysis identified the Instrumentation class as having
a side-effect on the mResumed field (See Listing 3).

1 class Instrumentation {
2 ...
3 public void callActivityOnResume(android.app.Activity param0){
4 if(Verify.randomBool()){
5 param0.mResumed=true;
6 }
7 }
8 ...
9 }

Listing 3: Stub of the Instrumentation class

From this result we can see that the callActivityOnResume-
method may change the value of the Activity’s mResumed field
to true. Since we want to keep the values of these Activity fields
set to the correct values, we need to preserve the behavior of this
method to ensure the field is set when this method is called in-
stead of stubbing it out and loosing this behavior. If we did not
recognize this side-effect to the mResumed field the value of the
field would have been incorrect and the Activity would execute
incorrectly, since it does not reach the resumed state.

4.3 Refining the implementation of the core
This section presents our results of applying the tools to refine and
optimize the contents of some of the large classes in the Android
core environment.

For this example we looked at the TextView class that represents a
widget displaying text. All widgets such as the Button and Edit-

Text objects, extend the TextView class since they also display
text. The mText field declared in the TextView class is used to
store this text internally. This is important for applications like
the Calculator application where the text on the buttons are used
in the logic of application implementation (Refer to Listing 2).
Since the mText field is an important field in the TextView class,
we ran OCSEGen to identify which methods reference this field.
Listing 4 below presents two methods which side-effect analysis
could clearly identify.

Analyzing this class using OCSEGen shows us: (1) which meth-
ods have no side-effects on this field and can be stubbed and (2)
which methods have effects on this field, such as the getText and
setText methods, and have to be inspected.

To preserve all references to the mText field, we ran Modgen to
slice the TextView class given only the mText field. Modgen re-
duced the TextView class from 9476 to 5827 LOC but the model



1 public java.lang.CharSequence getText(){
2 return this.mText;
3 }
4

5 private void setText(java.lang.CharSequence param0, android.
widget.TextView.BufferType param1, boolean param2, int
param3){

6 java.lang.CharSequence r0 = null;
7 r0=param0;
8 if(Verify.randomBool()){
9 this.mText=r0;

10 }
11 }

Listing 4: Extract from the TextView Stub created by
OCSEGen

that was generated was over-approximated. Its slicing algorithm
kept references to all the variables and code effecting this field
which resulted in the tool preserving too much of the original code
in the model to be of any insight as this stage. The reduction in
size can mainly be attributed to the removal of code in methods
not referencing the mText field which can be done more effectively
using OCSEGen. Modgen can also not retain call hierarchies since
it only performs intra-procedural analysis on a single class at a
time. The generated stub of the setText method, for example,
was not reduced in size by the slicing and other methods that
calls the setText method was stubbed out since the tool could
not detect changes further down in the call hierarchy.

The biggest issue with using the slicer is the decompilation of the
generated Java byte-code back to Java source code. We used the
the Java Decompiler (JAD) 3 and Procyon 4 but both of these
tools are still in development and could not completely decompile
the byte-code into compilable Java source-code. This is a problem
since fixing the code manually does not scale to large classes.

5. DISCUSSION
By investigating the two static analysis tools, we found that both
side-effect analysis and slicing could be useful in generating en-
vironment models.

Side-effect analysis is designed to detect modifications to the fields
of interest, but may not be able to detect what kind of modifica-
tion was made. For example storing or removing from an array is
detected as a modification, but side-effect analysis can not distin-
guish between them whereas slicing can. We still need to inspect
each side-effect manually to identify and preserve its effect.

Slicing on the other hand is used to optimize classes for which
not all behavior is relevant to the verification of the unit. Slicing
has the advantage that it will preserve all functionality in the
original class in a sound way by removing unused behavior. For
small classes this works well but for larger, more complex classes
slicing includes too much of the original implementation since all
references to the specific fields are preserved in the model.

To refine the core classes we can combine these techniques to
identify methods that have a side-effect on certain fields and then
retain the changes by looking at a sliced version of the class. The
main problem is the capabilities of the slicer.

There are three improvements to the tools that can be invest-
igated. The first improvement is adding support to OCSEGen

3http://jd.benow.ca
4https://bitbucket.org/mstrobel/procyon

to not only identify methods called from a set of classes, but to
identify all callers of a specific class or method. This will enhance
the driver generation capabilities of OCSEGen.

The second improvement is to extend OCSEGen to merge results
of the different runs of stub generations and side-effect analysis
instead of inspecting them manually.

Another improvement is to extend and refine the slicing capabil-
ities of Modgen to generate more efficient models.

6. RELATED WORK
OSGEGen has previously been applied to Java applications mak-
ing use of the Swing GUI framework [2]. Since their work was
focused on analyzing interaction orderings for the applications,
the environment generation is localized to modeling the environ-
ment around the code implementing the GUI. OCSEGen was used
to analyze the interaction between the application code and the
Swing library to identify classes in the framework reachable from
the application and preserve side-effects to the state of the GUI
objects. They defined the state of GUI objects as enabledness,
visibility, containment and listener registration. In this approach,
the stub environment is modeled closely to the application and
for the application to run, the driver needs to be smart in the
sense that it needs to generate valid sequences of input events.
A disadvantage of this approach is that it generates application
specific stubs that need to be expanded by running OCSEGen on
multiple applications to create more general stubs.

7. CONCLUSION
There are many technique available for environment generation,
but it is hard to know when and where to apply these techniques
to a specific domain. This research is aimed towards finding where
these techniques can be applied to the Android domain to generate
the environment model.

In this paper we discussed two specific static analysis tools, OC-
SEGen and Modgen and how they can be applied to the Android
domain to improve the current approach to create environment
stubs by hand. But, generation of environment is only a small
part of the work that needs to be done to generate an Android
environment model. Future work will investigate other techniques
such as runtime monitoring and also find ways to automatically
generate other parts of the environment such as the driver.

8. REFERENCES
[1] M. Ceccarello and O. Tkachuk. Automated Generation of Model

Classes for Java PathFinder. In ACM SIGSOFT Software
Engineering Notes, 2013.

[2] M. Dwyer, Robby, O. Tkachuk, and W. Visser. Analyzing
interaction orderings with model checking. Proceedings. 19th
International Conference on Automated Software Engineering,
2004., pages 154–163.

[3] O. Tkachuk. OCSEGen: Open components and systems
environment generator. In Proceedings of the 2nd International
Workshop on State Of the Art in Java Program analysis (SOAP),
number 1, pages 2–5, 2013.

[4] H. van der Merwe, B. van der Merwe, and W. Visser. Verifying
Android applications using Java PathFinder. ACM SIGSOFT
Software Engineering Notes, 37(6):1, Nov. 2012.

[5] H. van der Merwe, B. van der Merwe, and W. Visser. Execution
and Property Specifications for JPF-Android. In ACM SIGSOFT
Software Engineering Notes, 2013.

[6] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model
Checking Programs. In Automated Software Engineering,
volume 10, pages 203 – 232. IEEE, IEEE Comput. Soc, 2003.


